

§ 2.4) Taylor formula:

$f(z, w)$ - rational function with poles only on $z=0, w=0$,
 $|z|=|w|$

$i_{z,w} f(z, w)$ - formal power series expansion in $|z| > |w|$

Let $a(z) = \sum_{n \in \mathbb{Z}} a_n z^n$ be a formal distrib.

$$i_{z,w} a(z-w) := \sum_{n \in \mathbb{Z}} a_n i_{z,w} (z-w)^n. \quad \text{defn.}$$

Kac says " $a(z-w)$ in region $|z| > |w|$ "

Prop. - 2.4

$a(z)$ - formal distribution. Then in $|z| > |w|$,
 $a(z+w) = \sum_{j=0}^{\infty} \partial^{(j)} a(z) w^j$ where, $\partial^{(j)} = \frac{\partial^j}{j!}$

*Taylor
formula
but with
formal distribution.*

Proof:

$$i_{z,w} a(z+w) = \sum_n a_n i_{z,w} (z+w)^n = \sum_n a_n i_{z,w} z^n \left(1 + \frac{w}{z}\right)^n$$

\therefore we're working in $|z| > |w|$
 region

$$= \sum_n a_n \sum_{j \geq 0} \binom{n}{j} z^{n-j} w^j$$

$$= \sum_{j \geq 0} \partial^{(j)} a(z) w^j$$

Then we make a change of variables $z \rightsquigarrow w$

$$w \rightsquigarrow z-w$$

$$a(z) = \sum_{j \geq 0} \partial^{(j)} a(w) (z-w)^j \quad \begin{array}{l} \text{(equality of formal} \\ \text{distribution in } w, z-w \\ \text{in the region } |w| > |z-w| \end{array}$$

Theorem-2.5(?)

$a(z)$ - formal distri

$$N \geq 0.$$

$$(\partial_w^N \delta(z-w)) a(z) = (\partial_w^N \delta(z-w)) \sum_{j=0}^N \partial^{(j)} a(w) (z-w)^j$$

Proof:

Recall that if $f(z)$ is a Laurent polynomial,
 $a(z, w)$ is a formal distribution,

Recall $\delta(z-w) = z^{-1} \sum_n \binom{z}{w}^n$
 formally

$$\operatorname{Res}_z a(z, w) f(z)$$

$$\operatorname{Res}_z \left(\partial_z^N \delta(z-w) a(z) f(z) \right) = \operatorname{Res}_z \left(\partial_z^N \delta(z-w) \sum_j \partial_z^{(j)} a(w) \frac{f(z)}{(z-w)^{j+1}} \right)$$

Identifies from prev. talk:

1) $\partial_w \delta(z-w) = -\partial_z \delta(z-w)$

2) Also, $\operatorname{Res}_z (\partial \alpha \cdot \beta) = \operatorname{Res}_z (\alpha \cdot \partial \beta)$

$$\operatorname{Res}_z \left(\delta(z-w) \partial_z^N (a(z) f(z)) \right) = \operatorname{Res}_z \left(\delta(z-w) \sum_j \partial_z^{(j)} a(w) \partial_z^N \frac{f(z)}{(z-w)^{j+1}} \right)$$

3) $\operatorname{Res}_z \delta(z-w) f(z) = f(w)$ on LHS

4) $\partial^N (\alpha \cdot \beta) = \sum_k \binom{N}{k} \partial^k \alpha \cdot \partial^{N-k} \beta$ on RHS

$$\begin{aligned} \partial_w^N a(w) f(w) &= \sum_j \frac{\partial_z^j}{j!} a(w) \binom{N}{j} \cdot j! \partial_w^{N-j} f(w) \\ &= \sum_j \binom{N}{j} \partial_z^j a(w) \partial_w^{N-j} f(w) \end{aligned}$$

§ 2.5 Current Algebras

\mathfrak{h} - Lie Superalgebra
 $a(z), b(w)$: \mathfrak{h} -valued distributions

a, b are mutually local if one of the following equivalent conditions hold:

- $[a(z), b(w)] = \sum_{j=0}^{N-1} S_w^{(j)} \delta(z-w) c^j(w)$, c^j = some h -valued distri

- $a(z) b(w) = \sum_{j=0}^{N-1} i_{z,w} \frac{1}{(z-w)^{j+1}} c^j(w) + :a(z) b(w):$

\nearrow

Distr. valued
in univ.
encapsulating
alg.

$:a_n b_m: =$
 $a_n b_m$ if $n < 0$
 $b_m a_n$ if $n \geq 0$

Physicists write

$$a(z) b(w) \sim \sum_j \frac{c^j(w)}{(z-w)^j} - \text{OPE}, \text{ where}$$

$c^j(w)$ are coefficients of OPE

Equivalence of these is proven using computation from:

$$\delta^N \delta(z-w) = i_{z,w} \frac{1}{(z-w)^{N+1}} - i_{w,z} \frac{1}{(z-w)^{N+1}}$$

- $[a_m, b_n] = \sum_j \binom{m}{j} c_{m+n-j}^j(w) w^{m-j}$

$$[a_{(m)}, b(w)] = \sum_j \binom{m}{j} c^j(w) w^{m-j}$$

\mathcal{I}_0 - oscillator algebra

\mathcal{S} - central extension of a ab alg. with basis

$$\alpha(z) = \sum_{n \in \mathbb{Z}} \alpha_n z^{-n-1}, \quad [\alpha(z), \alpha(w)] = \sum_n n z^{-n-1} w^{-n-1} K$$

$$= \partial_w \delta(z-w) K$$

$$\alpha(z) \alpha(w) \sim \frac{K}{(z-w)^2} - \text{"free boson algebra"}$$

\mathfrak{g} - some lie superalg.

$\tilde{\mathfrak{g}} = \mathfrak{g}[t, t^{-1}]$ - Loop superalgebra

Assume \mathfrak{g} has a super-symmetric invariant bilinear form:

$$a|b = (-1)^{p(a)}(b|a) \text{ where } p = \text{parity}$$

$$\Downarrow (a|b) = 0 \text{ if } p(a) \neq p(b)$$

$$([a, b] | c) = (a | [b, c])$$

$$a_m = a \underset{\mathfrak{g}}{\circledast} t^m, \quad a \in \mathfrak{g}, \quad [a_m, b_n] = m(a|b) \delta_{m,n} K \text{ in } \tilde{\mathfrak{g}}$$

current alg,

$$\hat{\mathfrak{g}} = \tilde{\mathfrak{g}} \oplus CK$$

K is central in $\hat{\mathfrak{g}}$

If \mathfrak{g} is a simple Lie alg, (1)-Killing form,

$\hat{\mathfrak{g}}$ - Kac-Moody Lie alg. associated to \mathfrak{g}

$a(z) = \sum_n a_n z^{-n-1}$, $a \in \mathfrak{g}$ called currents.

Currents to be mutually local:

$$[a(z), b(w)] = \delta(z-w) [a, b](w) + \partial_w \delta(z-w) (a|b) K$$

or in OPE notation:

$$a(z) b(w) \sim \frac{[a, b](w)}{z-w} + \frac{(a|b) K}{(z-w)^2}$$

There is a generalization of affinization called superaffinization.

$\hat{\mathfrak{g}}_{\text{super}}$ is a central extension of the super loop

algebra $\mathfrak{A}[t, t^{-1}, \Theta]$, $\mathfrak{p}(\Theta) = 1$

$$a_{n+\frac{1}{2}} = a \otimes t^n \Theta, \quad \bar{a}(z) = \sum_{n \in \mathbb{Z}} a_{n+\frac{1}{2}} z^{-n-1} \text{ - supercurrent.}$$

$\bar{a}(z)$ are mutually local wrt both currents & supercurrents.

$$a(z)\bar{b}(w) \sim \frac{\overline{[a, b]}(w)}{z-w}, \quad \overline{a(z)} \overline{b(w)} = \frac{([b][a])K}{z-w}$$

\mathfrak{A} - super vector space with super-skew symm- form:

$$(a|b) = -(-1)^{p(a)} (b|a)$$

Clifford affinization is the superalgebra $C_A = A[t, t^{-1}] \otimes \mathfrak{K}$

with commutation relations

$$[\varphi_m, \psi_n] = (\varphi, \psi) \delta_{m,-n} K, \quad m, n \in \frac{1}{2} + \mathbb{Z}$$

$$\varphi, \psi \in \mathfrak{A}$$

$$\varphi_m = a \otimes t^{m-1/2}$$

$$\psi(z) = \sum \psi_{n+\frac{1}{2}} z^{-n-1} \text{ are mutually local.}$$

$$\varphi(z)\varphi(w) \sim \frac{(\varphi\varphi)k}{z-w}$$

Example-1 :

$$A = \text{span}_{\mathbb{C}} \langle \varphi \rangle, \langle \varphi | \varphi \rangle = 1$$

$$K = 1$$

$$\text{In } C_A, \varphi_m \varphi_n + \varphi_n \varphi_m = \delta_{m,-n}, \varphi(z)\varphi(w) \sim \frac{1}{z-w}$$

\downarrow
 neutral
 free
 fermion

Example-2 :

$$A = \text{span} \langle \varphi^+, \varphi^- \rangle, \langle \varphi^+ | \varphi^- \rangle = 1, \langle \varphi^+, \varphi^+ \rangle = 0,$$

$$\varphi_m^\pm \varphi_n^\mp + \varphi_n^\mp \varphi_m^\pm = \delta_{m,-n}, \varphi_m^\pm \varphi_n^\pm + \varphi_n^\pm \varphi_m^\pm = 0$$

$$\varphi^\pm(z) \varphi^\mp(w) \sim \frac{1}{z-w}$$

$$\varphi^\pm(z) \varphi^\mp(w) = 0$$

$\varphi^\pm(z)$ - charged free fermions.

§ 2.6) Conformal weights & Virasoro alg.

U - some assoc. alg

H - derivation of U ("Hamiltonian")

$a(z, w, \dots)$ is called an eigen distribution with conformal weight Δ if

$$(H - \Delta - z\partial_z - w\partial_w - \dots)a = 0$$

Note: if $a = a(z) = \sum a_n z^n$,

$$(H - \Delta - h) a_n = 0$$

Proposition:

a, b, \dots, w weights Δ, Δ'

a) $\partial_z a$ is an eigendistribution of conformal weight $\Delta + 1$

b) $:a(z)b(w):$ " " " " " " $\Delta + \Delta'$

c) n^{th} op. coeff. in $[a(z), b(w)]$ has weight $\Delta + \Delta' - n - 1$

d) f - homog. fn. of degree j , then fa is a "

" " " with wt. $\Delta-j$

Corollary:

a, b mutually local of wt. $\Delta, \Delta' \Rightarrow$

$$a(z)b(w) \sim \sum \frac{c^j(w)}{(z-w)^{j+1}} \text{ -all summands of deg. } \Delta+\Delta'$$

Convention:

a is of weight Δ , $a = \sum_{n \in \sim \Delta + \mathbb{Z}} a_n z^{-n-\Delta}$

$$[a_m, b_n] = \sum_{j=0}^{N-1} \binom{m+\Delta-1}{j} c_{m+n}^j$$

$$[a_m, b(z)] = \sum_{j=0}^{N-1} \binom{m+\Delta-1}{j} c_j^j(z) z^{m+\Delta-j-1}$$

Example:

For \hat{A} , $H = -t \partial_t$ ($H = -t \partial_t - \frac{1}{2} \theta \bar{\theta} \partial \bar{\partial}$)

currents have wt. 1, supercurrents $\frac{1}{2}$.

It commonly happens that conformal weights are $\frac{1}{2}\mathbb{Z}^+$, with weight 0, achieved by central element which leads to:

wt(a), wt(b)	$a(z)b(w) \sim$
$\frac{1}{2}, \frac{1}{2}$	$\frac{c}{z-w} + \frac{c}{(z-w)^2}$
$1, 1$	$\frac{c(w)}{z-w} + \frac{c}{(z-w)^2}$
$\frac{1}{2}, 1$	$\frac{c_{1/2}(w)}{z-w}$

We look for an even self-local distribution of conformal weight 2:

$$L(z) = \sum_{n \in \mathbb{Z}} L_n z^{n-2}$$

This restriction implies,

$$L(z)L(w) = \frac{c/2}{(z-w)^4} + \frac{a(w)}{(z-w)^3} + \frac{2b(w)}{(z-w)^2} + \frac{c(w)}{z-w}$$

Thm: If we have such L , then:

a) $a(w) = \sigma, c(w) = \partial b(w)$

b) If in addition, $[C, L(z)] = 0, [L_{-1}, L(z)] = \partial L(z)$

$$[L_0, L(z)] = (z\partial + 2)L(z)$$

Then, coeff. L_n satisfy Virasoro relations

$$[L_m, L_n] = (m-n)L_{m+n} + \frac{m^3 - m}{12} S_{m, -n} C.$$